Journal of Organometallic Chemistry, 394 (1990) 77-85
Elsevier Sequoia S.A., Lausanne
JOM 20824

# Synthesis of aryltin(IV) complexes using arylmercury compounds. Synthesis of mixed triaryltin(IV) complexes. Crystal and molecular structure of $\left[\mathbf{S n}\left(2-\mathbf{C}_{6} \mathbf{H}_{\mathbf{4}} \mathbf{N}=\mathbf{N P h}\right) \mathbf{P h}_{\mathbf{2}} \mathbf{C l}\right]$ 

José Vicente *, Maria Teresa Chicote, Maria del Carmen Ramirez-de-Arellano *<br>Departamento de Quimica Inorganica, Facultad de Ciencias Quimicas, Universidad de Murcia, Campus de Espinardo, 30. 171 Espinardo, Murcia (Spain)<br>and Peter G. Jones *<br>Institut flir Anorganische und Analytische Chemie der Technischen Universität, Hagenring 30, 3300 Braunschweig (F.R.G.)<br>(Received January 31st, 1990)


#### Abstract

The compound [ $\mathrm{Sn}\left(2-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~N}=\mathrm{NPh}\right) \mathrm{Ph}_{2} \mathrm{Cl}$ ] (1) has been prepared by reaction of [ $\mathrm{SnPh}_{2} \mathrm{Cl}_{2}$ ] with $\left[\mathrm{Hg}\left(2-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~N}=\mathrm{NPh}\right)_{2}\right.$ ] (1/1) and of [ $\mathrm{Sn}\left(2-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~N}=\mathrm{NPh}\right) \mathrm{PhCl}_{2}$ ] with $\left[\mathrm{HgPh}_{2}\right]$ (1/1). Similarly, [ $\left.\mathrm{Sn}(\mathrm{AzMe}) \mathrm{Ph}_{2} \mathrm{Cl}\right]$ (2) (AzMe $=5-\mathrm{Me}-2-$ $\left(\mathrm{N}=\mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{Me}-4\right) \mathrm{C}_{6} \mathrm{H}_{3}$ ) has been obtained by reaction of $\left[\mathrm{SnPh}_{2} \mathrm{Cl}_{2}\right]$ with $\left[\mathrm{Hg}(\mathrm{AzMe})_{2}\right](1 / 1)$. Metathetical reactions between 2 and $\mathrm{KX}(1 / 1)$ have been shown to give [ $\left.\mathrm{Sn}(\mathrm{AzMe}) \mathrm{Ph}_{2} \mathrm{X}\right](\mathrm{X}=\mathrm{Br}$ (3), I (4), CN (5)]. Compound 2 does not react with NaF but the corresponding fluoro complex $\left[\mathrm{Sn}(\mathrm{AzMe}) \mathrm{Ph}_{2} \mathrm{~F}\right]$ (6) can be made by treating NaF with the complex obtained from the reaction of complex 2 with $\mathrm{AgClO}_{4}$. In the crystal compound 1 shows a distorted trigonal bipyramidal coordination around the tin atom. The equatorial positions are occupied by the three carbon atoms of the aryl ligands, with the tin atom lying $0.26 \AA$ out of the equatorial plane on the side of the axial chloro atom. The 2-(phenylazo)phenyl ligand forms a five-membered chelate ring with a bite angle $\mathrm{C}-\mathrm{Sn}-\mathrm{N}$ of 70.3(1) ${ }^{\circ}$.


## Introduction

The main advantage of organomercury compounds as transmetallating reagents over the classical organolithium and Grignard reagents is the wider range of organic

[^0]groups, including functionalized groups that can be transferred. However, their lower reactivity restricts their utility. Thus, while the use of an excess of an aryllithium reagent allows the synthesis of polyaryltin compounds, arylmercury compounds give only mono- or di-arylspecies [1].

We have shown previously that aryltin(IV) compounds containing phenyl (Ph) and/or $2-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~N}=\mathrm{NPh}$ (Ar) ligands can be made from mercury derivatives by two different routes: (i) redox transmetallation reactions [2,3]:
$2[\mathrm{Hg}(\mathrm{Ar}) \mathrm{Cl}]+\mathrm{Sn} \rightarrow\left[\mathrm{Sn}(\mathrm{Ar})_{2} \mathrm{Cl}_{2}\right]+2 \mathrm{Hg}$
$[\mathrm{Hg}(\mathrm{Ar}) \mathrm{Cl}]+\mathrm{SnCl}_{2} \rightarrow\left[\mathrm{Sn}(\mathrm{Ar}) \mathrm{Cl}_{3}\right]+\mathrm{Hg}$
(ii) transmetallation reactions $[3,4]$ :
$\left[\mathrm{Sn}(\mathrm{Ar}) \mathrm{Cl}_{3}\right]+\left[\mathrm{HgPh}_{2}\right] \rightarrow\left[\mathrm{Sn}(\mathrm{Ar})(\mathrm{Ph}) \mathrm{Cl}_{2}\right]+[\mathrm{Hg}(\mathrm{Ph}) \mathrm{Ci}]$
$\left[\mathrm{Sn}(\mathrm{Ph}) \mathrm{Cl}_{3}\right]+\left[\mathrm{HgAr}_{2}\right] \rightarrow\left[\mathrm{Sn}(\mathrm{Ar})\left(\mathrm{Ph}^{2}\right) \mathrm{Cl}_{2}\right]+[\mathrm{Hg}(\mathrm{Ar}) \mathrm{Cl}]$
Triaryltin compounds, $\left[\mathrm{Sn}(\mathrm{Ar})_{3} \mathrm{X}\right]$, are usually obtained by (a) dearylation reactions [e.g. $\left[\mathrm{Sn}(\mathrm{Ar})_{4}\right]+\mathrm{X}_{2}$ (or XH )]; or (b) transmetallation reactions with aryl derivatives of $\mathrm{Li}, \mathrm{Mg}, \mathrm{Al}$, or Sn [5]. We know of only one example of a mixed triaryltin(IV) complex, $\left[\mathrm{Sn}\left(2-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{NMe}_{2}\right)(\mathrm{Ph})_{2} \mathrm{Br}\right]$, which was made by Van Koten by reaction of [ $\mathrm{SnPh}_{2} \mathrm{Br}_{2}$ ] with [ $\left.\mathrm{Cu}\left(2-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{NMe}_{2}\right)\right]$ [6]. In this paper we show that the organomercury route can be used to prepare mixed triaryltin(IV) compounds.

## Results and discussion

The complex [ $\left.\mathrm{Sn}\left(2-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~N}=\mathrm{NPh}\right) \mathrm{Ph}_{2} \mathrm{Cl}\right]$ (1) can be obtained (i) by refluxing a chloroform solution of $\left[\mathrm{Sn}\left(2-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~N}=\mathrm{NPh}\right) \mathrm{PhCl}_{2}\right]$ with $\left[\mathrm{HgPh}_{2}\right](1 / 1)$ or (ii) by treating [ $\mathrm{SnPh}_{2} \mathrm{Cl}_{2}$ ] at room temperature in diethyl ether with $\left[\mathrm{Hg}\left(2-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~N}=\mathrm{NPh}\right)_{2}\right.$ ] $(1 / 1)$. Similarly, $\left[\mathrm{Sn}(\mathrm{AzMe}) \mathrm{Ph}_{2} \mathrm{Cl}\right](2)\left(\mathrm{AzMe}=5-\mathrm{Me}-2-\left(\mathrm{N}=\mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{Me}^{2}\right) \mathrm{C}_{6} \mathrm{H}_{3}\right)$ can be made from $\left[\mathrm{SnPh}_{2} \mathrm{Cl}_{2}\right]$ and $\left[\mathrm{Hg}(\mathrm{AzMe})_{2}\right](1 / 1)$.

$$
\begin{align*}
& {\left[\mathrm{Sn}\left(2-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~N}=\mathrm{NPh}\right) \mathrm{PhCl}_{2}\right]+\left[\mathrm{HgPh}_{2}\right] \rightarrow } \\
& {\left[\mathrm{Sn}\left(2-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~N}=\mathrm{NPh}\right) \mathrm{Ph}_{2} \mathrm{Cl}\right]+[\mathrm{Hg}(\mathrm{Ph}) \mathrm{Cl}] } \tag{i}
\end{align*}
$$

$$
\begin{array}{r}
{\left[\mathrm{SnPh}_{2} \mathrm{Cl}_{2}\right]+\left[\mathrm{Hg}(\mathrm{Ar})_{2}\right] \rightarrow\left[\mathrm{Sn}(\mathrm{Ar}) \mathrm{Ph}_{2} \mathrm{Cl}\right]+[\mathrm{Hg}(\mathrm{Ar}) \mathrm{Cl}]}  \tag{ii}\\
\left(\mathrm{Ar}=2-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~N}=\mathrm{NPh}(1), \mathrm{Ar}=\mathrm{AzMe}(2)\right)
\end{array}
$$

The presence of an excess of chloride ion in transmetallation reactions is useful because this ion can bring about symmetrization of the by-products of the transmetallation reactions (e.g. $2[\mathrm{Hg}(\mathrm{Ar}) \mathrm{Cl}]+\mathrm{Cl}^{-} \rightarrow\left[\mathrm{HgAr}_{2}\right]+\left[\mathrm{HgCl}_{3}\right]^{-}$), so that only half as much mercurial is required [4]. Sometimes, when the aryl group is able to act as a chelating ligand (as is the case for $2-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~N}=\mathrm{NPh}$ or $2-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{NMe}_{2}$ ), an anionic chloro complex is selected for the transmetallation process because then the chelating coordination of the aryl ligand leads to the formation of chloride ion and the subsequent symmetrization [7].

However, attempts to apply this approach to the synthesis of complexes 1 and 2 were unsuccessful. There was no reaction between $\mathrm{Me}_{4} \mathrm{~N}\left[\mathrm{Sn}\left(2-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~N}=\mathrm{NPh}\right)(\mathrm{Ph}) \mathrm{Cl}_{3}\right]$ and $\left[\mathrm{HgPh}_{2}\right]$ or $\mathrm{Me}_{4} \mathrm{~N}\left[\mathrm{SnPh}_{2} \mathrm{Cl}_{3}\right]$ and $\frac{1}{2}\left[\mathrm{Hg}(\mathrm{AzMe})_{2}\right]$. In addition, the reaction


Scheme 1. Outline of various methods of preparing 2-(phenylazo)phenyltin(IV) complexes ( $\mathrm{Ar}=2$ $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~N}=\mathrm{NPh}$ ).
$\left[\mathrm{SnPh}_{2} \mathrm{Cl}_{2}\right]+\left[\mathrm{Hg}\left(2-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~N}=\mathrm{NPh}\right) \mathrm{Cl}\right]+\mathrm{Cl}^{-}$gave $\mathrm{Me}_{4} \mathrm{~N}\left[\mathrm{SnPh}_{2} \mathrm{Cl}_{3}\right]$. However, the reaction between $\left[\mathrm{Sn}(\mathrm{Ph}) \mathrm{Cl}_{3}\right]$ and $\left[\mathrm{Hg}\left(2-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~N}=\mathrm{NPh}\right)_{2}\right](2 / 1)$ in the presence of an excess of $\mathrm{Me}_{4} \mathrm{NCl}$, gave $\mathrm{Me}_{4} \mathrm{~N}\left[\mathrm{Sn}\left(2-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~N}=\mathrm{NPh}\right)\left(\mathrm{Ph}^{2}\right) \mathrm{Cl}_{3}\right]$ [4]. The difference in the behaviour of the mono- and di-phenyltin(IV) complexes may be due to the more acidic character of the former, which could facilitate the formation of an aryl bridge between both metals in the transfer of the aryl group.

Scheme 1 summarizes the various methods we have developed for the synthesis of homo- and hetero-aryltin(IV) complexes using aryl mercury compounds [2-4].

In the reaction of complex 2 at room temperature with an excess of $\mathrm{KX}(\mathrm{X}=\mathrm{Br}$, $\mathrm{I}, \mathrm{CN})$ the chloro ligand is replaced to give $\left[\mathrm{Sn}(\mathrm{AzMe}) \mathrm{Ph}_{2} \mathrm{X}\right]$ (3-5). The substitution is complete after 24 h for $\mathrm{X}=\mathrm{CN}$ but not for $\mathrm{X}=\mathrm{Br}$ or I . However, the reaction does not occur when complex 2 is treated with $\mathrm{NaF}(1 / 1,14 \mathrm{~h}$, refluxing in ethanol), and no adduct is formed with $\mathrm{Cl}^{-}, \mathrm{PPh}_{3}$, or 1,10-phenanthroline. This is

Table 1
Analytical and other data for complexes 1-6

| Compound | Yield <br> (\%) | $\begin{aligned} & \text { M.p. } \\ & \left({ }^{\circ} \mathrm{C}\right) \end{aligned}$ | Analytical data (found(calc.) ( $\pm 0.05 \%$ )) |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | C | H | N |
| [Sn(2-C6 $\left.\left.{ }_{6} \mathbf{N}=\mathbf{N P h}\right) \mathrm{Ph}_{2} \mathrm{Cl}\right](1)$ | 96 | 184 | $\begin{gathered} \mathbf{5 8 . 5 5} \\ (58.90) \end{gathered}$ | $\begin{gathered} \hline 4.25 \\ (3.90) \end{gathered}$ | $\begin{gathered} 5.85 \\ (5.70) \end{gathered}$ |
| [ $\mathrm{Sn}\left(\mathrm{AzMe}^{\text {a }} \mathrm{Ph}_{2} \mathrm{Cl}\right]$ (2) | 83 | 216 | $\begin{gathered} 60.00 \\ (60.35) \end{gathered}$ | $\begin{gathered} 5.00 \\ (4.50) \end{gathered}$ | $\begin{aligned} & 5.40 \\ & (5.40) \end{aligned}$ |
| [ $\left.\mathrm{Sn}(\mathrm{AzMe}) \mathrm{Ph}_{2} \mathrm{Br}\right]$ (3) | 87 | 215 | $\begin{gathered} 56.55 \\ (55.55) \end{gathered}$ | $\begin{gathered} 4.50 \\ (4.10) \end{gathered}$ | $\begin{aligned} & 4.60 \\ & (5.00) \end{aligned}$ |
| [ $\left.\mathrm{Sn}(\mathrm{AzMe}) \mathrm{Ph}_{\mathbf{2}} \mathrm{I}\right]$ (4) | 82 | 202 | $\begin{gathered} 52.00 \\ (51.25) \end{gathered}$ | $\begin{gathered} 4.10 \\ (3.80) \end{gathered}$ | $\begin{gathered} 4.10 \\ (4.60) \end{gathered}$ |
| [ $\left.\mathrm{Sn}(\mathrm{AzMe}) \mathrm{Ph}_{2} \mathrm{CN}\right]$ (5) | 68 | 178 | $\begin{gathered} 62.95 \\ (63.80) \end{gathered}$ | $\begin{gathered} 4.90 \\ (4.55) \end{gathered}$ | $\begin{aligned} & 7.40 \\ & (8.25) \end{aligned}$ |
| $\mathbf{[ S n ( A z M e ) P h} \mathbf{2}^{\mathbf{F}]}{ }^{(\%)}$ | 63 | 180 | $\begin{gathered} 63.35 \\ (62.30) \end{gathered}$ | $\begin{gathered} 5.20 \\ (4.65) \end{gathered}$ | $\begin{aligned} & 5.60 \\ & (5.60) \end{aligned}$ |

Table 2
${ }^{1}$ H NMR spectroscopic data ${ }^{a}$
[ $\left.\mathrm{Sn}\left(2-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~N}=\mathrm{NPh}\right) \mathrm{Ph}_{2} \mathrm{Cl}\right](1)$
7-8.5(m, Ph)
[ $\left.\mathrm{Sn}(\mathrm{AzMe}) \mathrm{Ph}_{2} \mathrm{Cl}\right]$ (2)
2.26 (Me), 2.51 (Me), 6.49 (d, 2H, H5, $J_{4,5} 8.4$ ) 7.3 (m, 6H, Ph), 7.43 (d, 2H, H4), 7.6 (m, 5H, Ph + H2),
8.20 (d, 1H, H1, $J_{1,2} 1.6$ ), 8.20 (d, 1H, H3, J ${ }_{2,3} 7.8$ )
$\left[\mathrm{Sn}(\mathrm{AzMe}) \mathrm{Ph}_{2} \mathrm{Br}\right]$ (3)
2.25 (Me), 2.52 (Me), 6.97 (d, 2H, H5, $J_{4.5} 8.4$ ), 7.3 (m, 6H, Ph), $7.39(\mathrm{~d}, 2 \mathrm{H}, \mathrm{H} 4), 7.5(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ph}+\mathrm{H} 2$ ), 8.20 (d, 1H, H3, $J_{2,3} 8$ ), 8.23 (d, $1 \mathrm{H}, \mathrm{H} 1, J_{1,2}$ 2)
[ $\left.\mathrm{Sn}(\mathrm{AzMe}) \mathrm{Ph}_{2} \mathrm{I}\right]$ (4)
$2.24(\mathrm{Me}), 2.54(\mathrm{Me}), 6.94\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{H} 5, \mathrm{~J}_{4}, 5.4\right), 7.3$ (m, 6H, Ph), 7.32 (d, 2H, H4), 7.5 (m, 5H, Ph + H2), 8.18 (d, 1H, H3, $J_{2,3} 8$ ), 8.23 (d, $1 \mathrm{H}, \mathrm{H} 1, J_{1,2} 2$ )
[ Sn (AzMe) $\left.\mathrm{Ph}_{2} \mathrm{CN}\right]$ (5)
$2.28(\mathrm{Me}), 2.52$ (Me), 7.02 (d, 2H, H5, J.5 8), 7.3 (m, 6H, Ph), 7.45 (d, 2H, H4), 7.5 (m, SH, Ph + H2), 8.07 (d, $\left.1 \mathrm{H}, \mathrm{H} 1, J_{1,2} 2\right), 8.20\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H} 3, J_{2,3} 8\right.$ )
$\left[\mathrm{Sn}(\mathrm{AzMe}) \mathrm{Ph}_{2} \mathrm{~F}\right]$ (6)
2.30 (Me), 2.47 (Me), 7.07 (d, 2H, H5, J., 8), 7.3 (m, 6H, Ph), 7.53 (m, 7H, Ph + H2 + H5), 8.02 (d, 1H, $\mathrm{H} 1, J_{1,2} 1$ ), 8.16 (d, 1H, H3, $J_{2,3} 8$ )
${ }^{a}$ The H atom numbering is, according to Fig. 1, $\mathrm{C} 16-\mathrm{H} 1$; $\mathrm{C} 14-\mathrm{H} 2 ; \mathrm{C} 13-\mathrm{H} 3$; $\mathrm{C} 22-\mathrm{H} 4 ; \mathrm{C} 23-\mathrm{H} 5 . \delta$ (ppm), $J(\mathrm{~Hz})$.


Fig. 1. The structure of complex 1 in the crystal, showing the atom numbering scheme. H atoms are omitted for clarity. Selected bond lengths ( $\AA$ ) and angles ( ${ }^{\circ}$ ): $\mathrm{Sn}-\mathrm{Cl} 2.445(2), \mathrm{Sn}-\mathrm{N}(1) 2.560(4)$, $\mathrm{Sn}-\mathrm{C}(11) 2.129(4), \mathrm{Sn}-\mathrm{C}(31) 2.141(4) \cdot \mathrm{Sn}-\mathrm{C}(41) 2.130(4), \mathrm{N}(1)-\mathrm{N}(2) 1.253(5), \mathrm{N}(1)-\mathrm{C}(21) 1.437(6)$, $\mathrm{N}(2)-\mathrm{C}(12) 1.424(6), \mathrm{Cl}-\mathrm{Sn}-\mathrm{N}(1) 167.0(1), \mathrm{Cl}-\mathrm{Sn}-\mathrm{C}(11) 97.3(1), \mathrm{N}(1)-\mathrm{Sn}-\mathrm{C}(11) 70.3(1), \mathrm{Cl}-\mathrm{Sn}-\mathrm{C}(31)$ 97.5(1), $\mathrm{N}(1)-\mathrm{Sn}-\mathrm{C}(31)$ 92.0(1), $\mathrm{C}(11)-\mathrm{Sn}-\mathrm{C}(31) 117.8, \mathrm{Cl}-\mathrm{Sn}-\mathrm{C}(41) 96.1(1), \mathrm{N}(1)-\mathrm{Sn}-\mathrm{C}(41) 85.9(1)$, $\mathrm{C}(11)-\mathrm{Sn}-\mathrm{C}(41) 113.9(1), \mathrm{C}(31)-\mathrm{Sn}-\mathrm{C}(41) 123.9(1), \mathrm{Sn}-\mathrm{N}(1)-\mathrm{N}(2) 113.5(3), \mathrm{Sn}-\mathrm{N}(1)-\mathrm{C}(21) 131.0(3)$, $\mathrm{N}(2)-\mathrm{N}(1)-\mathrm{C}(21) 115.4(3), \mathrm{N}(1)-\mathrm{N}(2)-\mathrm{C}(12) 114.5(4), \mathrm{N}(2)-\mathrm{C}(12)-\mathrm{C}(11) 123.7(4), \mathrm{N}(2)-\mathrm{C}(12)-\mathrm{C}(13)$ 114.4(4), $\mathrm{Sn}-\mathrm{C}(11)-\mathrm{C}(12) 118.0(3), \mathrm{Sn}-\mathrm{C}(11)-\mathrm{C}(16) 124.0(3)$.
$2.9-2+0.7$





Scheme 2. ${ }^{13} \mathrm{C}$ NMR chemical shift parameters ( $\left.\delta\left(\mathrm{C}_{6} \mathrm{H}_{6}\right) \mathbf{1 2 8 . 5} \mathrm{ppm}\right)$.
typical behaviour for a triaryltin(IV) complex. Complex 2 does not react with $\mathrm{Na}\left[\mathrm{BPh}_{4}\right]$, but does react with $\mathrm{AgClO}_{4}$ to give a product that analyzed as " $\mathrm{Sn}(\mathrm{AzMe})(\mathrm{Ph})_{2}\left(\mathrm{ClO}_{4}\right)$ ", but could not be isolated spectroscopically pure. However, an ethanolic solution of this complex reacted with NaF to give [ $\mathrm{Sn}(\mathrm{AzMe}) \mathrm{Ph}_{2} \mathrm{~F}$ ] (6).

Complexes 1-6 are non-conducting in acetone. Table 1 presents their analytical and other data.

The mass spectra of complexes 1-6 show the molecular ion, except for the iodo complex 4, and the ions $[M-\mathrm{X}]^{+}$and $[M-\mathrm{Ph}]^{+}$.

Complexes 1 and 2 show the $\mu(\mathrm{Sn}-\mathrm{Cl})$ band at $270(\mathrm{~s})$ and $280(\mathrm{~s}) \mathrm{cm}^{-1}$, respectively. In the starting complex [ $\mathrm{Sn}\left(2-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~N}=\mathrm{NPh}\right) \mathrm{PhCl}_{2}$ ] the two bands at $340(\mathrm{~m})$ and $290(\mathrm{~s}) \mathrm{cm}^{-1}$ were assigned to $\nu(\mathrm{SnCl})_{\text {eq }}$ and $\nu(\mathrm{SnCl})_{\text {ax }}$, respectively [3,4]. According to this assignment the chloro ligand in complexes 1 and 2 must be in the axial position (see below). Complexes $3-6$ do not show the $\nu(\mathrm{SnCl})$ band. The cyano complex 5 shows characteristic bands at $2140(\mathrm{w})$ [ $\nu(\mathrm{CN})$ ] and $330(\mathrm{~m})$ ( $\nu(\mathrm{CSn})$ or $\delta(\mathrm{SnCN})$ ), and the fluoro complex 6 shows a $\nu(\mathrm{SnF})$ band at $500 \mathrm{~cm}^{-1}$.

The ${ }^{1} \mathrm{H}$ NMR data for complexes $1-6$ are shown in Table 2. The ${ }^{13} \mathrm{C}$ NMR chemical shifts of complexes 2-6 were assigned by use of the concept of additivity of substituent effects. The relevant parameters (see Scheme 2) for the substituents $\mathrm{Me}, \mathrm{N}=\mathrm{N}[\mathrm{Sn}] \mathrm{Ph}\left([\mathrm{Sn}]=\mathrm{SnPh}_{2} \mathrm{Cl}\right)$ and $\mathrm{SnPh}_{2} \mathrm{Cl}$ were derived from $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Me}, \mathrm{Ph}_{2} \mathrm{~N}_{2}$ and $\left[\mathrm{SnPh}_{3} \mathrm{Cl}\right]$, respectively [8-10], while those for $\mathrm{N}[\mathrm{Sn}]=\mathrm{NPh}$ and $\mathrm{Sn}(\mathrm{Ph})(\mathrm{AzMe}) \mathrm{Cl}$ were calculated using data from complex 2. As expected, they are not too different from the parameters for $\mathrm{N}_{2} \mathrm{Ph}$, and $\mathrm{SnPh}_{2} \mathrm{Cl}$, respectively. The calculated and observed values in complex 2 are almost identical. A correction of -3.3 ppm for the $\mathrm{C}(16)$ carbon atom (see atom numbering, Fig. 1) is necessary for complexes 3 and 4 and of -4.0 ppm for the C 24 atom for the cyano complex 5 . The chemical shifts corresponding to complex 1 are also in good agreement with those calculated ( $\pm 2$ ppm) except that for the C11 atom, which is $\mathbf{- 4 . 6} \mathrm{ppm}$ away from the calculated
value. The chemical shifts of the Me carbon nuclei are at 21.7 and $21.3 \mathrm{ppm}( \pm 0.1$ ppm ), and that of CN at 121.6 ppm .
${ }^{13} \mathrm{C}-{ }^{117,119} \mathrm{Sn}$ coupling is always observed for the ortho- ( $J 48 \pm 1 \mathrm{~Hz}$ ) and meta-carbon ( $J 73 \pm 1 \mathrm{~Hz}$ ) nuclei of the unsubstituted phenyl groups bonded to the tin atom. In one case (complex 6 ) coupling with the para-carbon is observed ( $J$ ca. 20 Hz ). These $J$ values are in good agreement with those previously reported [10]. In the case of complex 6 the couplings of ${ }^{117,119} \mathrm{Sn}$ with those carbon atoms bonded to hydrogen of the C11-C16 ring are also observed ( $J(\mathrm{Sn}, \mathrm{C} 16)$, ca. 30, $J(\mathrm{Sn}, \mathrm{C} 13)$, ca. 50 , and $J(\mathrm{Sn}, \mathrm{C} 14)$, ca. 20 Hz ).

The ${ }^{19}$ F NMR spectrum of complex 6 shows a singlet at $-197.1 \mathrm{ppm}\left(\mathrm{CFCl}_{3}\right)$, with ${ }^{117,119} \mathrm{Sn}$ satellites ( $J 2237$ and 2140 Hz ).

Crystal structure of complex 1. The structure of complex 1 is shown in Fig. 1. The tin atom is five-coordinate; the molecular geometry is that of a distorted trigonal bipyramid, with the phenyl groups equatorial and chlorine and N1 axial. The structure is related to that of the starting complex $\left[\mathrm{Sn}\left(2-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~N}=\mathrm{NPh}\right) \mathrm{PhCl}_{2}\right.$ ] [4] by replacement of the equatorial chloro ligand by a phenyl group. The disposition of the ligands is the same as in [ $\mathrm{Sn}\left(2-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{NMe}_{2}\right) \mathrm{Ph}_{2} \mathrm{Br}$ ] [11].

The chloro ligand lies almost normal (within $0.9^{\circ}$ ) to the equatorial plane defined by $\mathrm{C} 11, \mathrm{C} 31$ and C 41 , whereas the corresponding angle to N 1 is $13.1^{\circ}$ because of the limited bite of the $2-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~N}=\mathrm{NPh}$ ligand ( $\mathrm{C} 11-\mathrm{Sn}-\mathrm{N} 1$ ), 70.3(1) ${ }^{\circ}$ ). The tin atom lies $0.26 \AA$ out of the equatorial plane in the direction of the Cl atom. The angles in the equatorial plane show only moderate deviations from the ideal $120^{\circ}\left(113.9-123.9(1)^{\circ}\right)$, and this is the main difference from the structure of [ $\mathrm{Sn}\left(2-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~N}=\mathrm{NPh}\right) \mathrm{PhCl}_{2}$ ] in which the $\mathrm{C}-\mathrm{Sn}-\mathrm{C}$ angle is $136.2(2)^{\circ}$ [4]. The widening of the $\mathrm{C}-\mathrm{Sn}-\mathrm{C}$ angle was previously rationalized [4] in terms of the assumption that the hybrid orbitals involved in the $\mathrm{Sn}-\mathrm{C}$ bonds would require greater $s$-character because of the more electronegative nature of the Cl atom. The replacement of this atom by a phenyl ligand in 1 is thus consistent with the narrowing of the C11-Sn-CX1 angles.

The $\mathrm{Cl}-\mathrm{Sn}$ bond length (2.445(2) $\AA$ ) lies in the range observed for $\mathrm{Cl}_{\mathrm{ax}}-\mathrm{Sn}$ bonds in other pentacoordinate tin complexes (2.39-2.57 $\AA$ ) [12] but is longer than the 2.415(2) $\AA$ observed for $\mathrm{Cl}_{\mathrm{ax}}-\mathrm{Sn}$ in $\left[\mathrm{Sn}\left(2-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~N}=\mathrm{NPh}\right) \mathrm{PhCl}_{2}\right.$ ] [4]. This is consistent with the VSEPR * model, because the repulsion $\mathrm{Cl}_{\mathrm{ax}}-\mathrm{Sn}$ bond pair/ $\mathrm{Ph}-\mathrm{Sn}$ bond pair in complex 1 is greater than the corresponding $\mathrm{Cl}_{\mathrm{ax}}-\mathrm{Sn}$ bond pair/ $\mathrm{Cl}_{\mathrm{eq}}-\mathrm{Sn}$ bond pair in [ $\mathrm{Sn}\left(2-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~N}=\mathrm{NPh}\right) \mathrm{PhCl}_{2}$ ].

The three $\mathrm{C}-\mathrm{Sn}$ bond lengths are similar, lying in the range observed in [ $\mathrm{Sn}\left(2-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{2} \mathrm{NMM}_{2}\right) \mathrm{Ph}_{2} \mathrm{Br}$ ] [11]. The $\mathrm{N} 1-\mathrm{Sn}$ bond length of $2.560(4)(\AA)$ is similar to those found in the octahedral complex [ $\mathrm{Sn}\left(2-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~N}=\mathrm{NPh}\right)_{2} \mathrm{Cl}_{2}$ ] (2.51, 2.58(2), [2]) or in [ $\mathrm{Sn}\left(2-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~N}=\mathrm{NPh}\right) \mathrm{PhCl}_{2}$ ] (2.541(3) $\AA$, [4]).

The chelate ring, in which the angles are narrower than ideal values, and $\mathrm{C} 13-\mathrm{C} 16$ atoms are nearly coplanar (rms deviation $0.005 \AA$ ). The dihedral angle between this plane and the ring $\mathrm{C} 21-\mathrm{C} 26$ is $13^{\circ}$. The three rings $\mathrm{C} 11-\mathrm{C} 16$, $\mathrm{C} 21-\mathrm{C} 26$, and $\mathrm{C} 31-\mathrm{C} 36$ are perpendicular to the equatorial plane (dihedral angles $86-93^{\circ}$ ), whereas the ring C41-C46 makes a much smaller angle of $12^{\circ}$.

[^1]
## Experimental

Infrared spectra were recorded in the range $4000-200 \mathrm{~cm}^{-1}$ on a Perkin Elmer 1430 spectrophotometer with Nujol mulls between polyethylene sheets. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded with $\mathrm{CDCl}_{3}$ solutions ( $\delta$ in ppm with respect to TMS) on a Bruker AC 200 spectrometer. The ${ }^{19} \mathrm{~F}$ NMR spectrum was recorded in a Varian FT 80 ( $\delta$ in ppm relative to $\mathrm{CFCl}_{3}$ ). Conductivities were measured for ca. $10^{-4} \mathrm{~mol} \mathrm{dm}{ }^{-3}$ acetone solutions with a Philips 9501 conductimeter. Melting points were determined on a Reichert apparatus and are uncorrected. C, H and N analyses were carried out with a Perkin Elmer 240C microanalyzer. Mass spectra were determined with a Hewlett-Packard GC/MS system 5993 at 70 eV. Reactions were carried out at room temperature with magnetic stirring and without special precautions against light or atmospheric moisture unless otherwise stated.
$\left[\mathrm{Sn}\left(2-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~N}=\mathrm{NPh}\right) \mathrm{Ph}_{2} \mathrm{Cl}\right]$ (1). To a suspension of $\left[\mathrm{SnPh}_{2} \mathrm{Cl}_{2}\right](200 \mathrm{mg}, 0.58$ mmol) in diethyl ether ( $10 \mathrm{~cm}^{3}$ ) was added solid $\left[\mathrm{Hg}\left(2-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~N}=\mathrm{NPh}\right)_{2}\right](327 \mathrm{mg}$, $0.58 \mathrm{mmol})$. After 48 h the suspension was filtered to remove [ $\left.\mathrm{Hg}\left(2-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~N}=\mathrm{NPh}\right) \mathrm{Cl}\right]$ and the resulting solution was concentrated ( $1 \mathrm{~cm}^{3}$ ) and $n$-hexane ( $4 \mathrm{~cm}^{3}$ ) added to precipitate complex 1. Single crystals were obtained by layer diffusion of n-hexane into a diethyl ether solution of complex 1.
[ $\left.\mathrm{Sn}(\mathrm{AzMe}) \mathrm{Ph}{ }_{2} \mathrm{Cl}\right]$ (2). To a suspension of $\left[\mathrm{SnPh}_{2} \mathrm{Cl}_{2}\right](500 \mathrm{mg}, 1.45 \mathrm{mmol})$ in chloroform ( $30 \mathrm{~cm}^{3}$ ) was added $\left[\mathrm{Hg}(\mathrm{AzMe})_{2}\right](900 \mathrm{mg}, 1.45 \mathrm{mmol})$ and the mixture refluxed for 12 h . The solution was then concentrated (to $1 \mathrm{~cm}^{3}$ ) and diethyl ether ( $50 \mathrm{~cm}^{3}$ ) added to precipitate $[\mathrm{Hg}(\mathrm{AzMe}) \mathrm{Cl}]$. The resulting suspension was filtered, the solution concentrated (to $2 \mathrm{~cm}^{3}$ ), and n -hexane ( $10 \mathrm{~cm}^{3}$ ) added to give complex 2, which was recrystallized from diethyl ether / n -hexane.
$\left[\operatorname{Sn}(\mathrm{AzMe}) \mathrm{Ph}_{2} X\right](X=\operatorname{Br}(3), I(4), C N(5))$. To a solution of complex 2 (100 $\mathrm{mg}, 0.19 \mathrm{mmol}$ ) in acetone ( $10 \mathrm{~cm}^{3}$ ) was added solid KX ( 1 g , excess). After 72 h $(\mathrm{X}=\mathrm{Br}, \mathrm{I})$ or $24 \mathrm{~h}(\mathrm{X}=\mathrm{CN})$ the suspension was concentrated to dryness and the residue extracted with dichloromethane. The extract was filtered and the solution concentrated ( $1 \mathrm{~cm}^{3}$ ), and n -hexane was added to precipitate complexes $3-5$, which were recrystallized from diethylether/n-hexane.
$\left[\operatorname{Sn}(\mathrm{AzMe}) \mathrm{Ph}_{2} \mathrm{~F}\right]$ (6). To a suspension of complex $2(100 \mathrm{mg}, 0.19 \mathrm{mmol})$ in ethanol ( $15 \mathrm{~cm}^{3}$ ) was added solid $\mathrm{AgClO}_{4}$ ( $40 \mathrm{mg}, 0.19 \mathrm{mmol}$ ). After 2 h in the dark the suspension was filtered through Celite, and the filtrate treated with solid NaF ( $24.3 \mathrm{mg}, 0.58 \mathrm{mmol}$ ). After 15 h the suspension was evaporated to dryness and extracted with dichloromethane ( $15 \mathrm{~cm}^{3}$ ). The extract was filtered then evaporated to dryness, and the solid washed with $n$-hexane $\left(3 \mathrm{~cm}^{3}\right)$ to give 6.

## $X$-Ray structure determination of complex $I$

Crystal data. $\mathrm{C}_{24} \mathrm{H}_{19} \mathrm{ClN}_{2} \mathrm{Sn}, M_{\mathrm{r}}=489.6$. Monoclinic, $P 2_{1} / n$, a 9.3558(10), $b$ $15.658(2), c 14.694(2) \AA, \beta 101.540(10)^{\circ}, U 2109 \AA^{3}, Z=4, D_{\mathrm{x}}=1.54 \mathrm{Mg} \mathrm{m}^{-3}$, $\lambda\left(\mathrm{Mo}-K_{\alpha}\right) 0.71069 \AA, \mu 1.35 \mathrm{~mm}^{-1}, F(000)=976, T 293 \mathrm{~K}$. Orange tablet, $0.5 \times 0.4 \times 0.1 \mathrm{~mm}$.

Data collection and reduction. Intensities were measured in profile-fitting mode on a Stoe-Siemens four-circle diffractometer using monochromated Mo- $K_{\alpha}$ radiation ( $2 \theta_{\max } 50^{\circ}, \omega / \theta$ scans). Of 3732 measured intensities, 3705 were unique ( $R_{\text {int }}=$ 0.011 ) and 3017 with $F>4 \sigma(F)$ considered observed. An absorption correction based on $\psi$-scans was applied, with transmissions $0.72-0.89$. Cell constants were refined from $\pm \omega$ values of 46 reflections in the range $2 \theta 20-23^{\circ}$.

Table 3
Atomic coordinates ( $\times 10^{4}$ ) and equivalent isotropic displacement parameters ( $\AA^{2} \times 10^{3}$ ) for complex 1

|  | $x$ | $y$ | $\Sigma$ | $U_{\text {eq }}$ |
| :---: | :---: | :---: | :---: | :---: |
| Sn | 3064.6(3) | 5837.8(2) | 2292.4(2) | 39(1) |
| Cl | 3786(1) | 5961.5(8) | 787.8(7) | 58(1) |
| N1 | 2764(4) | 5453(2) | 3937(2) | 46(1) |
| N2 | 3347(4) | 4757(2) | 4223(3) | 52(1) |
| C11 | 4073(4) | 4638(3) | 2686(3) | 43(1) |
| C12 | 4030(4) | 4322(3) | 3574(3) | 47(1) |
| C13 | 4675(5) | 3548(3) | 3892(3) | 59(2) |
| C14 | 5390(5) | 3080(3) | 3316(4) | 67(2) |
| C15 | 5429(5) | 3379(3) | 2443(4) | 68(2) |
| C16 | 4782(5) | 4161(3) | 2130(3) | 56(2) |
| C21 | 2077(5) | 5906(3) | 4584(3) | 48(1) |
| C22 | 1771(5) | 5524(3) | 5379(3) | 61(2) |
| C 23 | 1091(7) | 6015(4) | 5954(4) | 81(2) |
| C24 | 709(6) | 6848(4) | 5743(4) | 72(2) |
| C25 | 1018(5) | 7210(3) | 4963(3) | 67(2) |
| C26 | 1688(5) | 6742(3) | 4376(3) | 58(2) |
| C31 | 753(4) | 5855(3) | 1790(3) | 41(1) |
| C32 | -251(5) | 5765(3) | 2361(3) | 54(2) |
| C33 | -1729(5) | 5725(3) | 1981(4) | 69(2) |
| C34 | -2228(5) | 5777(3) | 1042(4) | 67(2) |
| C35 | -1251(5) | 5875(3) | 482(4) | 73(2) |
| C36 | 222(5) | 5914(3) | 846(3) | 62(2) |
| C41 | 4288(4) | 6907(3) | 2918(3) | 41(1) |
| C42 | 3842(5) | 7734(3) | 2704(3) | 56(2) |
| C43 | 4691(7) | 8412(3) | 3078(4) | 74(2) |
| C44 | 6003(7) | 8275(4) | 3656(4) | 80(2) |
| C45 | 6452(6) | 7461(4) | 3874(3) | 75(2) |
| C46 | 5607(5) | 6781(3) | 3513(3) | 58(2) |

[^2]Structure solution and refinement. The structure was solved by the heavy-atom method and refined anisotropically to $R=0.034, R_{w}=0.033$. Hydrogen atoms were included in the refinement using a riding model. The weighting scheme was $w^{-1}=\sigma^{2}(F)+0.0002 F^{2} .253$ parameters, $S=1.49$, $\max . \Delta / \sigma 0.001$, max. $\Delta \rho 1 \mathrm{e}$ $\AA^{-3}$. Final atomic coordinates are presented in Table 3, with selected bond lengths and angles in the caption to Fig. 1. The program system employed was XS/XLS, written by Prof. G.M. Sheldrick.

Full details of the structure determination (complete bond lengths and angles, H atom coordinates, thermal parameters, structure factors) have been deposited at the Fachinformationszentrum Karlsruhe, Gesellschaft für wissenschaftlich-technische Information mbH, 7514 Eggenstein-Leopoldshafen 2, W. Germany. Any request for this material should quote a full literature citation and the reference number CSD 54407.

## Acknowledgements

We thank the Comision Asesora de Investigacion Cientifica y Tecnica (Spain) (PB85-0.295) and the Fonds der Chemischen Industrie (Frankfurt, W. Germany) for
financial support and Sankyo Organic Chemicals Co. Ltd. (Japan) for a gift of [ $\mathrm{SnPh}_{2} \mathrm{Cl}_{2}$ ]. M.C.R. thanks Patronato A. García Rogel (Obra Social CAM) for a grant. The X-ray studies were performed at the Inorganic Chemistry Institute, University of Göttingen, W. Germany.

## References

1 See for example, R.J. Cross and J. Gemmill, J. Chem. Soc., Dalton Trans., (1984) 199; V.I. Sokolov, L.L. Troitskaya and O.A. Reutov, J. Organomet. Chem., 93 (1975) C11; R.E Cobbledick, F.W.B. Einstein, W.R. McWhinnie and I.H. Musa, J. Chem. Res., (1979) (S) 140, (M) 1901; E. Wehman, G. van Koten, J.T.B.H. Jastrzebski, H. Ossor, and M. Pfeffer, J. Chem. Soc., Dalton Trans., (1988) 2975; J. Vicente, J. Martín, X. Soláns, and M. Font-Altaba, Organometallics, 8 (1989) 357.

2 J.L. Briansó, X. Soláns, and J. Vicente, J. Chem. Soc., Dalton Trans., (1983) 169.
3 J. Vicente, M.T. Chicote, R.M. Carreño, and M.C. Ramired-de-Arellano, J. Organomet. Chem., 368 (1989) 263.

4 J. Vicente, M.T. Chicote, M.C. Ramirez-de-Arellano, G. Pelizzi, and F. Vitali, J. Chem. Soc., Dalton Trans., (1990) 279.
5 M. Dub (Ed.), Organometallic Compounds. Methods of Synthesis. Physical Constants and Chemical Reactions, Vol. II, R.W. Weiss (Ed.), Compounds of Germanium, Tin and Lead Including Biological Activity and Commercial Application. 2nd ed., Springer Verlag, Berlin, 1967, p. 302. First Supplement, 1973, p. 493.
6 G. van Koten, C.A. Schaap, and J.G. Noltes, J. Organomet. Chem., 99 (1975) 157.
7 J. Vicente, M.T. Chicote, M.D. Bermúdez, X. Solans, and M. Font-Altaba, J. Chem. Soc., Dalton Trans., (1984) 557; J. Vicente, M.T. Chicote, and M.D. Bermúdez, J. Organomet. Chem., 268 (1984) 191.

8 R.M. Silverstein, G.C. Bassler, and T.C. Morrill, Spectrometric Identification of Organic Compounds, 4th ed., John Wiley, New York, 1981, p. 265.
9 H.B. Singh and W.R. McWhinnie, J. Chem. Soc., Dalton Trans., (1985) 821.
10 T.N. Mitchell, J. Organomet. Chem., 59 (1973) 189.
11 G. van Koten, J.G. Noltes, and A.L. Spek, J. Organomet. Chem., 118 (1976) 183.
12 W. Clegg, C.M.J. Grievson and K. Wade, J. Chem. Soc. Chem. Commun., (1987) 969; R.A.H. Howie, E.S. Paterson, J.L. Wardell and J.W. Burley, J. Organomet. Chem., 304 (1986) 301; J. Buckle, P.G. Harrison and J.A. Richards, J. Chem. Soc. Chem. Commun., (1972) 1104; H. Weichmann, J. Meunier-Piret and M. van Meerssche, J. Organomet. Chem., 309 (1986) 267; P.G. Harrison and K. Molloy, ibid., 152 (1978) 63; S.K. Lee and B.K. Nicholson, ibid., 309 (1986) 257; F.W.B. Einstein and B.R. Penfold, J. Chem. Soc. Chem. Commun., (1966) 780; F.W.B. Einstein and B.R. Penfold, J. Chem, Soc. A, (1968) 3019.


[^0]:    * On the occasion of the 65th birthday of Prof. Stone we and Drs. J.A. Abad and M.D. Bermudez wish to express our gratitude for his great contribution to our knowledge of organometallic chemistry.

[^1]:    * VSEPR = valence shell electron pair repulsion.

[^2]:    ${ }^{a}$ Equivalent isotropic $U$ defined as one third of the trace of the orthogonalized $U_{i j}$ tensor

